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Abstract

Transferring the reasoning capability from stronger large language
models (LLMs) to smaller ones has been quite appealing, as smaller
LLMs are more flexible to deploy with less expense. Among the
existing solutions, knowledge distillation stands out due to its out-
standing efficiency and generalization. However, existing methods
suffer from several drawbacks, including limited knowledge di-
versity and the lack of rich contextual information. To solve the
problems and facilitate the learning of compact language models,
we propose TinyLLM, a new knowledge distillation paradigm to
learn a small student LLM from multiple large teacher LLMs. In
particular, we encourage the student LLM to not only generate the
correct answers but also understand the rationales behind these
answers. Given that different LLMs possess diverse reasoning skills,
we guide the student model to assimilate knowledge from various
teacher LLMs. We further introduce an in-context example gen-
erator and a teacher-forcing Chain-of-Thought strategy to ensure
that the rationales are accurate and grounded in contextually ap-
propriate scenarios. Extensive experiments on six datasets across
two reasoning tasks demonstrate the superiority of our method.
Results show that TinyLLM can outperform large teacher LLMs
significantly, despite a considerably smaller model size. The source
code is available at: https://github.com/YikunHan42/TinyLLM.
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1 Introduction

Large language models (LLMs) have recently taken over various do-
mains and web applications, including society [49], education [78],
and recommendations [75]. Although cutting-edge language mod-
els like GPT-4 and Claude-2 have shown remarkable capability in
producing coherent and contextually appropriate text, their smaller
counterparts often fall short, especially in tasks that demand sophis-
ticated reasoning and a deep level of understanding [70]. This dis-
crepancy has been unveiled as the well-known scaling law of LLMs,
which suggests a correlation between model size and reasoning,
linguistic, and generalization capabilities [31]. However, deploy-
ing these colossal models in a real-world setting poses significant
challenges due to their computational requirements and resource
demands, underscoring the importance of building efficient, smaller
models that retain the power of their larger counterparts. Previous
studies have shown that knowledge distillation is an instrumental
tool in mitigating the performance gap between larger LLMs and
smaller ones [24, 64]. Examples of effective distillation methods
include DistilBERT [51], Alpaca [55] and Vicuna [83].

However, existing methods suffer from two major drawbacks: (1)
Limited Knowledge Diversity: Current research predominantly
employs a single-teacher approach, which confines the learning
scope of the student model to the knowledge derived from its own
training and architecture designs [23, 35, 43, 68]. This restricts
the student model to a single perspective, potentially overlooking
the diverse problem-solving strategies and reasoning capabilities
exhibited by different models, limiting its breadth and depth of
understanding. (2) Lack of Rich Contextual Information: While
rationales play a vital role in effective reasoning [33, 71], current
research primarily focuses on leveraging ground truth labels, which
indicate the correct answer but do not provide insights into the
reasoning and thought process behind that answer. In other words,
learning the ground truth labels exclusively failed to capture the nu-
anced decision-making processes of the teachers, which are crucial
for tasks requiring complex reasoning and interpretation.

https://github.com/YikunHan42/TinyLLM
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To solve these issues, we propose TinyLLM, a paradigm that
facilitates the learning of a small student LLM by distilling knowl-
edge from multiple large teacher LLMs with rationale guidance.
Specifically, TinyLLM mitigates the limited knowledge diversity
issue by involving multiple teacher models as co-advisors, which
introduces a richer, varied knowledge source for the student to
learn from. To fully exploit each teacher model and mitigate the
lack of rich contextual information problem, TinyLLM asks the
teacher for the credible rationales to support the answers, thereby
providing the student with a deeper understanding of the problem-
solving process. By learning from multiple teachers, the student
model can inherit a broader range of skills and knowledge, lead-
ing to better generalization capabilities. In addition, to ensure the
rationales are grounded in contextually appropriate scenarios and
reflect the true underlying reasoning procedure, TinyLLM features
an in-context example generator and a teacher-forcing Chain-of-
Thought strategy, making the teachers understand the task through
demonstrations and therefore generate the accurate rationales.

To thoroughly evaluate our approach, we conduct experiments
on six datasets in commonsense and biomedical reasoning tasks.
The results show that the usage of our paradigm enhances perfor-
mance by +5.07% to +15.69% compared to full fine-tuning. Com-
pared to the teacher models, TinyLLM achieves superior perfor-
mance improvement, e.g., up to +23.40% with significantly smaller
model size, e.g., 1.1% to 26.0%. In addition, compared to the state-of-
the-art distillation methods, our approach improves the distillation
performance by +10.00% to +11.79% across different model sizes.
With the aim of further validating the effectiveness of our method,
we perform efficiency analyses, ablation studies, parameter sensi-
tivities, and case studies to provide a comprehensive evaluation
across multiple dimensions. To summarize, our main contributions
are as follows:
• We identify two critical limitations in the existing knowledge
distillation landscape for LLMs: 1) limited knowledge diversity,
and 2) lack of rich contextual information.

• To solve these two problems, we propose TinyLLM, a novel
knowledge distillation paradigm to learn a small student LLM
from multiple large teacher LLMs.

• TinyLLM encompasses several innovative designs including an
in-context example generator, a teacher-forcing Chain-of-Thought
strategy, and a joint learning objective from various teachers.

• Extensive experiments validate the superiority of TinyLLM across
six datasets and two reasoning tasks, with performance improv-
ing by up to +15.69% compared to full fine-tuning, up to +23.40%
compared to teacher models, and up to +11.79% compared to
state-of-the-art. In addition,TinyLLM holds a significantly smaller
model size, e.g., 1.1% to 26.0% compared to the teachers.

2 Related Work

In this section, we review existing work including large language
models, chain of thought, and knowledge distillation.
Large Language Models. Recent advancements have seen the pro-
posal of various Large Language Models (LLMs) [5, 13, 47, 60, 61],
which have showcased remarkable performance across a spectrum
of tasks [40, 41, 52, 54, 67, 72]. Central to these developments is
question answering, a task that necessitates intricate reasoning

and comprehensive understanding skills for text interpretation and
generating suitable responses to queries [8, 42, 58, 84]. Despite
their formidable learning capabilities, LLMs encounter limitations
in accurately capturing factual knowledge and are prone to produc-
ing unsubstantiated responses [3, 29, 82]. Moreover, the extensive
number of parameters within LLMs complicates their adaptation
for downstream tasks [53, 74]. To mitigate these challenges, several
approaches aim to lessen the dependency on intensive training and
reduce computational costs [25, 34, 36, 66]. For example, Prompt
Tuning [18, 34, 39, 65] employs soft prompts to adapt pre-trained
LLMs for specific tasks.
Chain of Thought. Recently, the use of rationales generated by
LLMs has become a popular trend, setting itself apart from the
traditional reliance on human-generated rationales [21, 26]. Previ-
ously, human rationales have been used for model regularization
[50], as additional inputs for predictions [48], and to improve model
performance [6, 15, 20, 27, 46, 77, 80, 81]. They also serve as gold
standard labels for generating similar rationales to enhance inter-
pretability [14, 45, 63, 73]. However, the cost of human rationales
limits their widespread use. On the other hand, modern LLMs can
generate high-quality reasoning steps to explain their predictions
[33, 71], improving performance in few-shot or zero-shot learning
[33, 68, 71] and serving as self-improvement data [28, 79]. However,
LLMs’ size hinders their deployment in practice. Correspondingly,
recent research explores leveraging generated rationales for train-
ing smaller, task-specific models with minimal computational and
memory overhead [23, 35, 43, 69]. For example, PINTO [68] presents
an LLM pipeline that rationalizes via prompt-based learning. How-
ever, they still rely on an LLM for rationale generation at test-time,
not fully addressing deployment challenges. In this work, we pro-
pose a multi-task learning paradigmwith superior chain-of-thought
reasoning capabilities, avoiding the dependence on teacher models
during the test phase.
Knowledge Distillation. Recent advancements in LLMs, such
as PaLM 540B [2, 10] and LLaMA 3.1 405B [13], bring formidable
challenges in terms of inference and fine-tuning due to their im-
mense computational requirements. Knowledge distillation [1, 9,
16, 19, 22, 57, 59, 76] has emerged as a pivotal approach to mitigate
these challenges by training smaller student models to mimic the
behavior of larger teacher models, significantly reducing resource
demands. White-box knowledge distillation leverages the output
distributions and hidden states of teacher models to provide the
student model with richer learning signals [17, 32, 56]. However,
this approach is infeasible for black-box settings where access to
internal teacher model states is restricted. The Chain-of-Thought
paradigm has further advanced knowledge distillation by enabling
the generation of detailed reasoning samples from teacher models
[23]. These samples allow student models to learn both the correct
answers and the intricate reasoning processes behind them. [24].
To enhance consistency, recent efforts have focused on generating
diverse rationales for the same query [7, 38], ensuring more robust
predictions. However, relying on rationales from a single teacher
model risks introducing bias and limiting the scope of reasoning
diversity. Multi-teacher learning paradigms, which integrate knowl-
edge from multiple teacher models, hold the potential to overcome
these limitations by enhancing knowledge diversity and capturing
a broader range of reasoning styles.
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Figure 1: Pipeline of TinyLLM: Given an input question, we first generate in-context examples and obtain rationales from

multiple large LLMs via a teacher-forcing Chain-of-Thought strategy. Later, a small student LLM is trained to integrate rationales

from different teachers via multi-task instruction tuning, along with the ground truth label.

3 Method

In this section, we formally present TinyLLM to resolve the chal-
lenges described in the Introduction. In particular, we start by de-
scribing the preliminary. Next, we introduce the details of TinyLLM
by first obtaining rationales from multiple teachers, and then learn-
ing a small student using the obtained rationales. The TinyLLM
pipeline is shown in Figure 1.

3.1 Preliminary

Multiple Choice Question Answering. A 𝑘-way multiple choice
question answering (MCQA) is defined as follows: Given a question
𝑄𝑖 , a set of candidate answer options 𝑂𝑖 = {𝑂𝑖1,𝑂𝑖2, ...,𝑂𝑖𝑘 }, the
model is tasked with selecting the correct answer from the set 𝑂𝑖 ,
such that the selected answer aligns the ground truth label 𝐴𝑖 .
Knowledge Distillation. The knowledge distillation process be-
gins with the teacher model, denoted as 𝑇 parameterized by 𝜃𝑇 ,
which has been pre-trained on a large corpus. Later, the student
model, 𝑆 , with parameter 𝜃𝑆 , is tasked with distilling knowledge
directly from𝑇 , leveraging the strong capabilities of𝑇 . Correspond-
ingly, the objective function can be formulated as: L = ℓ (𝑆,𝑇 ),
where ℓ indicates the learning function, e.g., cross-entropy loss
between the prediction output of the student and the target output
generated by the teacher.

3.2 Obtaining Rationales from Teachers

To enforce the teacher LLMs generate high-quality rationales for
student learning, our approach incorporates an In-context Exam-
ple Generator to enrich contextual information, a Teacher-forcing
Chain-of-Thought strategy to avoid misinformation, and rationale
generation from multiple teachers to support student training.

In-context Example Generator. To enable that rationales gener-
ated by teacher models are grounded in contextually appropriate
scenarios, we introduce an optional in-context example genera-
tor. This tool provides additional context by generating examples
that include both questions and corresponding rationales in a zero-
shot setting, enhancing the teacher models’ comprehension of task-
specific nuances. Each generated in-context example offers a unique
perspective on the dataset and provides additional insights. By in-
cluding a range of in-context examples and sending them with the
input question to the teacher LLMs, we enhance the input with
richer information that aids the model in generating higher-quality
rationales. This approach allows the student model to learn not
only from correct answers but also from the underlying reasoning,
thereby enhancing both the accuracy and interpretability of the
distilled model.
Teacher-forcing Chain-of-Thought. In addition, we design a
teacher-forcing strategy to ensure the validity of the rationales.
Compared to existing methods that simply employ regular chain-
of-thought (CoT) mechanisms [33, 71], wherein an LLM is prompted
with sets of questions and options {𝑄𝑖 ,𝑂𝑖 } to elicit rationales 𝑅𝑖
directly, TinyLLM posits a distinct advantage in integrating the
correct answer𝐴𝑖 into the input. We hypothesize that the inclusion
of 𝐴𝑖 alongside 𝑄𝑖 and 𝑂𝑖 facilitates a more nuanced understand-
ing of the input context and the correct logical rationales leading
to the answer, thereby facilitating a more informed and accurate
generation process. Specifically, we consider the concatenation of
questions, options, and answers {𝑄𝑖 ,𝑂𝑖 , 𝐴𝑖 } as the input to LLMs.
Rationales fromMultiple Teachers.Given𝑀 teachers, TinyLLM
pioneers the usage of a multi-teacher architecture in which each
teacher𝑇𝑚 is an LLM. In particular, the rationale 𝑅𝑚

𝑖
produced by a

specific teacher model 𝜃𝑇𝑚 for the 𝑖th question is derived using the
question𝑄𝑖 , options𝑂𝑖 , correct answer𝐴𝑖 , and in-context examples
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𝑃𝑖 . The process is formalized as follows:

𝑅𝑚𝑖 = 𝑇𝑚 (𝑄𝑖 ,𝑂𝑖 , 𝐴𝑖 , 𝑃𝑖 ;𝜃𝑇𝑚 ) . (1)

3.3 Learning a Small Student

A straightforward strategy to incorporate rationales as supervision
is to append each rationale 𝑅𝑚

𝑖
generated by the teacher models as

supplementary input to the student model, along with the question
𝑄𝑖 and options 𝑂𝑖 . However, this method faces challenges due
to limitations in computational resources at the inference stage,
especially because rationales must be pre-generated for every data
sample in both training and test sets [68]. To overcome this issue,
we employ rationales as a form of supervisory signal during the
training process to develop a model that is adept at generating
its explanations. Subsequently, this trained model can be utilized
on the test set, eliminating the need for pre-generated rationales
to facilitate accurate reasoning. Specifically, TinyLLM integrates
rationales from multiple teacher models into a unified multi-task
instruction tuning framework. This necessitates the assignment of
a unique prefix 𝑝 for distinguishing between learning tasks from
different teachers. The student model is trained not only to predict
labels but also to generate rationales akin to those produced by the
teachers. Accordingly, the overall loss function L is as follows:

L = L𝐴 +
𝑀∑︁

𝑚=1
𝛼𝑚L𝑇𝑚 , (2)

where L𝐴 denotes the objective of learning from ground truth
answers, L𝑇𝑚 indicates the objective of learning from𝑚-th teacher,
𝛼𝑚 is the importance weight for𝑇𝑚 , and𝑀 is the number of teacher
LLMs. Formally, L𝐴 and L𝑇𝑚 are defined as follows:

L𝐴 =
1
𝑁

𝑁∑︁
𝑖=1

ℓ (𝑆 (𝑄𝑖 ,𝑂𝑖 , 𝑝𝐴;𝜃𝑆 ), 𝐴𝑖 ), (3)

L𝑇𝑚 =
1
𝑁

𝑁∑︁
𝑖=1

ℓ (𝑆 (𝑄𝑖 ,𝑂𝑖 , 𝑝𝑚 ;𝜃𝑆 ), 𝑅𝑚𝑖 ), (4)

where𝑁 is the number of data samples, ℓ indicates the cross-entropy
loss between the predicted and target tokens. Here L𝐴 encourages
the student 𝑆 to generate ground truth answer𝐴𝑖 by minimizing the
difference between it and the student output given the question 𝑄𝑖 ,
options 𝑂𝑖 , and instruction prefix 𝑝𝐴 for generating answers. On
the other hand, L𝑚

𝑇
facilitates the student 𝑆 to mimic the reasoning

capability of teacher 𝑇𝑚 by learning from its rationale 𝑅𝑚
𝑖
, with

the guidance of instruction prefix 𝑝𝑚 for 𝑇𝑚 .

4 Experiments

In this section, we rigorously test TinyLLM against a series of empir-
ical benchmarks across varied datasets and reasoning tasks. In ad-
dition, we conduct efficiency analyses, ablation studies, parameter
sensitivity tests, and case studies to demonstrate the effectiveness
and superiority of our method.

4.1 Experimental Setup

Datasets. For the task of commonsense reasoning, we use Open-
BookQA (OBQA) [44], The AI2 Reasoning Challenge (ARC) [12],

Physical Interaction Question Answering (PIQA) [4], and Riddle-
Sense (Riddle) [37]. For the task of biomedical reasoning, we con-
sider PubMedQA (PQA) [30] and BioASQ [62].
Baselines. We benchmark TinyLLM against the teacher’s per-
formance and various baseline methods, including Inference-only
that only leverage the pre-trained model for evaluation without
training, and multiple fine-tuning methods that provide further
adaptation. In particular, we consider LoRA [25], full fine-tuning,
and the PINTO method [68] for the fine-tuning methods. We also
compare TinyLLM with various knowledge distillation strategies.
To illustrate, we include standard KD [22] that enforces the student
to mimic the teacher’s labels and the Distill-step-by-step method
[24] that leverage rationales.
ImplementationDetails. For all distillation baselines andTinyLLM,
we set the learning rate to 5 × 10−5, batch size to 8, maximum in-
put length to 1024, and epoch to 1. For Distill-step-by-step and
TinyLLM, the trade-off weights 𝛼𝑇𝑛 are explored within {0.01, 0.1,
0.5, 1, 2, 3}. We report the best result for Distill-step-by-step by
leveraging different teacher models. For the choice of LLMs, we use
FLAN-T5 [11] small (80M), base (250M), and large (780M) as the
student, and FLAN-T5 xlarge (3B) and LLaMA 2-chat [61] (7B) as
teachers. Experiments are conducted on four NVIDIA H100 Tensor
Core GPUs.

4.2 Performance Comparison

Comparison to Baselines Methods.We conducted a thorough
evaluation of our method, TinyLLM, across six diverse datasets
spanning two distinct reasoning tasks: commonsense reasoning and
biomedical reasoning. The detailed results are presented in Table 1,
offering a comprehensive view of the performance landscape across
different model sizes and methodologies. From the table, we derive
several observations as follows.

First, while full fine-tuning is theoretically capable of maximizing
parameter adjustments and should yield the best results in principle,
it does not consistently outperform parameter-efficient fine-tuning
methods such as LoRA. This outcome suggests that simply hav-
ing a larger number of adjustable parameters does not guarantee
improved generalization or performance, especially when the fine-
tuning process may inadvertently overfit the training data or fail
to capture nuanced task-specific knowledge.

Second, TinyLLM demonstrates consistent and substantial per-
formance improvements across all datasets and model sizes, under-
scoring the robustness and adaptability of our approach. Specifically,
the quantitative gains achieved by TinyLLM are noteworthy: we
observe an average performance boost of +15.69%, +11.55%, and
+5.07% for student models with 80M, 250M, and 780M parameters,
respectively, compared to full fine-tuning. These improvements
are significant, particularly considering that larger models often
exhibit diminishing returns on performance gains, making these
results even more compelling.

Third, when compared to the state-of-the-art distillation method,
Distill-step-by-step, TinyLLM achieves impressive relative improve-
ments of +10.00%, +10.32%, and +11.79% for the 80M, 250M, and
780M student models, respectively. These results highlight the ef-
fectiveness of our method in distilling knowledge from large mod-
els into the smaller student model. The consistent superiority of
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Table 1: Overall experimental results. The best results across different datasets and LLM sizes are highlighted in bold. Δ𝐹𝐹 and

Δ𝐷𝑖𝑠𝑡𝑖𝑙𝑙 represent the relative performance improvement of TinyLLM to Full Fine-Tuning and Distill-step-by-step, respectively.

Accuracy is used as the evaluation metric.

Commonsense Reasoning Biomedical Reasoning
Setting Method

OBQA ARC PIQA Riddle PQA BioASQ

Total

3B/7B Teacher FLAN-T5 xlarge 69.20 68.24 58.43 53.73 71.50 65.85 64.49
LLaMA 2 58.60 45.90 78.80 47.65 54.50 73.75 59.87

80M Student
Size: 2.7%/1.1%

Inference 16.60 19.31 20.78 13.33 38.00 47.97 26.00
PINTO 46.40 26.87 48.10 25.29 60.00 80.49 47.86
LoRA 37.80 27.12 39.93 39.80 53.75 78.05 46.08

Full Fine-tuning 41.60 27.47 42.33 42.75 56.25 78.86 48.21
Standard KD 45.80 29.53 49.29 36.27 58.00 81.30 49.43

Distill-step-by-step 46.40 30.47 50.38 36.67 59.00 81.30 50.70
TinyLLM 49.40 33.05 53.65 51.18 62.00 85.37 55.78

Δ𝐹𝐹 ↑ 18.75% ↑ 20.31% ↑ 26.74% ↑ 19.72% ↑ 10.22% ↑ 8.26% ↑ 15.69%
Δ𝐷𝑖𝑠𝑡𝑖𝑙𝑙 ↑ 6.47% ↑ 8.47% ↑ 6.49% ↑ 39.57% ↑ 5.08% ↑ 5.01% ↑ 10.00%

250M Student
Size: 8.3%/3.6%

Inference 31.00 23.00 30.47 30.78 48.00 57.72 36.83
PINTO 50.40 38.63 52.12 34.90 61.75 82.93 53.46
LoRA 51.40 37.25 47.66 53.14 62.00 82.93 55.73

Full Fine-tuning 56.60 38.88 47.55 52.55 64.75 89.43 58.29
Standard KD 55.40 43.69 55.93 42.94 64.25 86.18 58.07

Distill-step-by-step 56.80 43.86 56.37 45.69 64.75 86.18 58.94
TinyLLM 64.20 48.50 60.17 60.78 66.25 90.24 65.02

Δ𝐹𝐹 ↑ 13.43% ↑ 24.74% ↑ 26.54% ↑ 15.66% ↑ 2.32% ↑ 0.91% ↑ 11.55%
Δ𝐷𝑖𝑠𝑡𝑖𝑙𝑙 ↑ 13.03% ↑ 10.58% ↑ 6.74% ↑ 33.03% ↑ 2.32% ↑ 4.71% ↑ 10.32%

780M Student
Size: 26.0%/11.1%

Inference 50.40 51.07 51.90 39.80 64.25 63.41 53.47
PINTO 62.20 52.10 57.13 42.94 70.00 84.55 61.49
LoRA 64.00 57.77 57.02 68.63 70.25 86.18 67.31

Full Fine-tuning 71.20 62.92 58.43 68.82 70.25 90.24 70.31
Standard KD 65.80 56.05 60.72 52.94 70.00 86.99 65.42

Distill-step-by-step 66.80 57.42 61.37 53.92 70.00 86.99 66.08
TinyLLM 74.40 64.29 67.90 70.98 73.00 92.68 73.88

Δ𝐹𝐹 ↑ 4.49% ↑ 2.18% ↑ 16.21% ↑ 3.14% ↑ 3.91% ↑ 2.70% ↑ 5.07%
Δ𝐷𝑖𝑠𝑡𝑖𝑙𝑙 ↑ 11.38% ↑ 11.96% ↑ 10.64% ↑ 31.64% ↑ 4.29% ↑ 6.54% ↑ 11.79%

TinyLLM across different model sizes and datasets demonstrates the
advantages of our design choices, including the strategic balance of
integrating intermediate rationale guidance and mimicking teacher
outputs. Furthermore, using rationales during training enhances
the model’s reasoning capability and improves interpretability over
conventional distillation.
Comparison to Teachers. In addition to outperforming baseline
methods, TinyLLM also exhibits superior performance compared to
the original teacher models. This is particularly remarkable given
the significant difference in model size. For instance, a 780M param-
eter student model trained with TinyLLM achieves an impressive
average performance score of 73.88 across various datasets. This
score represents a substantial improvement of +14.56% over the per-
formance of 3B teacher model, and an even more striking +23.40%

performance improvement over the 7B teacher model. However, fur-
ther reducing the size of the student model can introduce difficulties
for the student to learn and result in decreased performance.

These results demonstrate the efficacy of TinyLLM in trans-
ferring knowledge and suggest that our approach enables smaller
models to generalize better and perform tasks more effectively than
their larger counterparts. Furthermore, the efficiency gains are par-
ticularly pronounced when considering smaller student models,
such as the 250M parameter model, which manages to surpass both
the 3B and 7B parameter teachers with relative improvements of
+0.82% and +8.60%, respectively. It is alsoworthmentioning that the
250M model operates with only 8.3% and 3.6% of the teacher mod-
els’ parameters, showcasing the remarkable efficiency of TinyLLM
in compressing and enhancing the performance of smaller models
without compromising accuracy.

4.3 Efficiency Analysis of Training Set Size in

Knowledge Transfer

Advantage Over Standard Knowledge Distillation. To thor-
oughly assess the efficiency and effectiveness of our proposed
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Figure 2: A comparative analysis of TinyLLM against the state-of-the-art Distill-step-by-step method using 80M and 250M

FLAN-T5 model architectures across various training set sizes. Dotted line indicates the full fine-tuning (FF) using 100% dataset.

It is evident that TinyLLM consistently surpasses the performance of both Distill-step-by-step and full fine-tuning. Notably,

TinyLLM achieves this superior accuracy while employing substantially fewer training examples.

method, TinyLLM, we conducted a series of experiments that evalu-
ate its performance across varying training set sizes, particularly in
comparison to the state-of-the-art Distill-step-by-step method. This
analysis is crucial for understanding how well our model performs
not only with full datasets but also under conditions of limited
training data, which is often a real-world constraint.

As illustrated in Figure 2, TinyLLM consistently outperforms the
Distill-step-by-step method across all tested ratios of the training
data, demonstrating its robustness and efficiency. This superior
performance is particularly evident even when we reduce the size
of the training set. The trend indicates that TinyLLM can effectively
leverage smaller amounts of data to achieve comparable or better
results than methods that require larger training datasets.

A striking example of this efficiency is observed in the context
of the PQA dataset. Here, TinyLLM, when trained with only 12.5%
of the available training data, not only meets but often exceeds the
performance levels achieved by Distill-step-by-step when utilizing
the full training set. This significant reduction in required training
data, without sacrificing performance, underscores the practical
advantages of TinyLLM, particularly in scenarios where data is
scarce or expensive to obtain.

This finding holds across different model sizes, including both
80M and 250M parameter student models. The consistent outstand-
ing performance of TinyLLM in these cases suggests that our
method is highly effective in transferring knowledge efficiently,
making it a versatile tool for various applications, regardless of the
model size. The capability of achieving superior performance with
limited data can be particularly beneficial in resource-constrained
environments, where computational resources and training time
are restricted.
Outperforming Full Fine-Tuning. Beyond its advantages over
standard knowledge distillation methods, TinyLLM also demon-
strates significant improvements compared to traditional full fine-
tuning approaches, even when using the entire dataset. This com-
parison further highlights the efficiency of our method in terms of
both data usage and computational resources.

In particular, when training a 250Mparametermodel withTinyLLM
on the ARC and PQA datasets, as well as training an 80M parameter
model on the PQA dataset, only 12.5% of the full training data is

Table 2: Impact of in-context examples, the teacher-forcing

strategy and contributions of various teachers.

Commonsense Biomedical
Variant

OBQA ARC PIQA Riddle PQA BioASQ

w/o in-context 73.20 63.09 66.27 69.22 70.75 86.99
w/o LLaMA 73.00 62.32 66.70 68.82 69.25 87.81
w/o T5 73.80 61.80 66.49 68.63 69.50 88.62

w/o diverse teachers 73.80 62.49 66.81 68.82 70.00 89.43
w/o teacher-forcing 73.80 60.94 65.94 69.02 70.25 90.24

TinyLLM 74.40 64.29 67.90 70.98 73.00 92.68

necessary to surpass the benchmarks established by full fine-tuning.
This result is remarkable, as it shows that TinyLLM can achieve
superior performance with a fraction of the data typically required
for full fine-tuning, significantly reducing the computational cost
and time required for training.

In addition, for 80M student model trained on the ARC dataset,
TinyLLM can achieve a higher accuracy than full fine-tuning with
a 75% reduction in training samples, while further increasing the
reduction to 87.5% results in a competitive performance. This result
demonstrates the capability of TinyLLM in reducing the need for
extensive training data to maintain or further improve the model
performance, making it an attractive alternative to full fine-tuning.

4.4 Ablation Study

To provide a comprehensive evaluation of our proposed method,
TinyLLM, we conducted an ablation study in Table 2 to validate the
contributions of key components in enhancing the reasoning capa-
bilities of the distilled LLM. Specifically, we focused on assessing
the impact of the in-context example generator, the use of rationales
from multiple teacher models, and the teacher-forcing strategy. By
isolating these components, we aim to understand their individual
and collective contributions to the overall performance of TinyLLM.
We designed four ablation variants of TinyLLM, each purposefully
modified to test the significance of specific components:
• w/o in-context removes the use of in-context examples during
rationale generation. This variant is crucial for evaluating the role
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of in-context examples in guiding the student model to produce
more accurate, relevant, and contextually appropriate rationales.

• w/o LLaMA and w/o T5 exclude the rationale supervision pro-
vided by the respective teacher models during the distillation
process. By removing the influence of either LLaMA or T5, these
variants help us understand the individual contributions of each
teacher’s rationales.

• w/o diverse teachers excludes the weaker teacher model, in-
stead generating multiple rationales from the stronger teacher
model. This variant is designed to test the effectiveness of us-
ing a diverse set of teachers, as opposed to relying on a single,
potentially more robust teacher.

• w/o teacher-forcing eliminates the teacher-forcing strategy
during rationale generation. Teacher-forcing is a techniquewhere
the model is trained using the correct output (from the teacher)
as input for the next step, rather than its own previous prediction.
By removing this strategy, we aim to assess its effectiveness in
helping the student model generate higher-quality rationales.
Table 2 provides a comparative analysis between each ablation

variant and the complete TinyLLM model. From the data presented
in Table 2, several important observations emerge: (1) TinyLLM con-
sistently outperforms all ablation variants, demonstrating that the
integration of all components—rationales from multiple teachers,
in-context examples, and the teacher-forcing strategy—collectively
contributes to the model’s superior performance. This result high-
lights the synergistic effect of these components, where their com-
bination leads to significant improvements in the reasoning capa-
bilities of the distilled LLM. (2) There is no substantial performance
gap between the different ablation variants, suggesting that while
each component contributes to the model’s performance, none of
them alone is solely responsible for the observed improvements.
This finding implies a balanced importance among the components,
with each playing a complementary role in refining the model’s
reasoning abilities.

4.5 Parameter Sensitivity

To thoroughly evaluate the robustness and adaptability of our pro-
posed model, we conducted parameter sensitivity experiments on
two datasets in different tasks: ARC for commonsense reasoning
and PQA for biomedical reasoning. These experiments are critical
for understanding how different parameter settings, particularly
the trade-off weights 𝛼𝑇 5 and 𝛼𝐿𝐿𝑎𝑀𝐴 , influence the model’s perfor-
mance across various tasks. The results of these sensitivity analyses
are depicted in Figure 3.

In this analysis, our primary focus is on exploring the effects
of varying the trade-off weights 𝛼𝑇 5 and 𝛼𝐿𝐿𝑎𝑀𝐴 , which balance
the influence of rationales provided by the T5 and LLaMA teacher
models, respectively. This exploration reveals the model’s adapt-
ability and how it responds to different parameter configurations,
offering insights into the optimal settings for maximizing perfor-
mance across different tasks and datasets. From the results shown
in Figure 3, our key observations are as follows.
Optimal Parameter Variability Across Datasets and Tasks. It
is evident that the optimal parameter settings for 𝛼𝑇 5 and 𝛼𝐿𝐿𝑎𝑀𝐴

vary depending on the dataset and the nature of the reasoning task.
For biomedical reasoning tasks, such as those found in the PQA

Figure 3: Performance w.r.t. different values of weight 𝛼 .

dataset, questions tend to be lengthy and complex, often requiring
deep comprehension and retrieval of detailed information. In these
cases, the impact of rationales from the teacher models is partially
diminished, given the complexity of the content overshadows the
direct utility of rationale guidance. As a result, a smaller value of
𝛼 is sufficient to achieve optimal performance. On the other hand,
commonsense reasoning tasks, exemplified by the ARC dataset,
typically involve more concise and straightforward questions. In
these scenarios, the rationales provided by the teacher models play
a more critical role in guiding the student model’s reasoning pro-
cess, leading to the need for a larger 𝛼 value to fully leverage this
guidance.
Effect of Increasing 𝛼 Values on Performance. Increasing the
values of𝛼𝑇 5 and𝛼𝐿𝐿𝑎𝑀𝐴 generally leads to improved performance,
which can be attributed to the enhanced Chain-of-Thought reason-
ing capabilities of the student model. By placing greater emphasis
on the rationales from teacher models, the student model benefits
from a richer multi-task learning experience, which enhances its
prediction capabilities. However, this improvement has its limits.
Excessively high values of 𝛼 can degrade performance by causing
the model to overly focus on reasoning processes at the expense
of prediction accuracy. This shift in focus may lead to a situation
where the model becomes too reliant on rationales, potentially over-
fitting to the rationale structure rather than learning to generalize
effectively from the data.
Differential Sensitivity of 𝛼𝑇 5 and 𝛼𝐿𝐿𝑎𝑀𝐴

Across Datasets.

The sensitivity of the parameters 𝛼𝑇 5 and 𝛼𝐿𝐿𝑎𝑀𝐴 varies between
different datasets, reflecting the diverse contributions of the T5 and
LLaMA teacher models to the reasoning process. For commonsense
reasoning tasks, we observe that 𝛼𝑇 5 is more sensitive than 𝛼𝐿𝐿𝑎𝑀𝐴 .
This suggests that the rationales generated by the T5 model are
particularly valuable for tasks involving straightforward reasoning,
where the logical flow and concise reasoning provided by T5 are
more impactful. Conversely, in biomedical reasoning tasks, the
sensitivities of 𝛼𝑇 5 and 𝛼𝐿𝐿𝑎𝑀𝐴 are more balanced, indicating that
both teacher models offer valuable, albeit different, insights that
complement each other in processing the complex and detailed
content typical of biomedical texts. This balance highlights the
importance of leveraging diverse teacher models to capture the full
range of reasoning required for different tasks.

4.6 Case Study

To gain a more intuitive understanding of why TinyLLM consis-
tently outperforms other models, we conducted case studies by
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Figure 4: Case study of different models’ prediction. Examples are selected from the ARC and PIQA datasets. In both cases,

TinyLLM successfully generates the correct answer.

comparing the predictions generated by different models. These
case studies offer valuable insights into the specific scenarios where
TinyLLM excels and highlight the advantages of our multi-teacher
approach. Figure 4 presents two representative examples that we
randomly selected from the ARC and PIQA datasets, illustrating
the differences in model predictions and the underlying rationales.

In the first example, taken from the ARC dataset, we observe a
significant discrepancy in the reasoning capabilities of the teacher
models. The T5 model provides a completely incorrect rationale,
leading to an incorrect prediction. In contrast, LLaMA generates a
meaningful and accurate rationale, which correctly guides the pre-
diction. However, the full fine-tuningmethod, which does not utilize
teacher rationales, also fails to provide the correct answer. Simi-
larly, the state-of-the-art Distill-step-by-step method also predicts
incorrectly, likely because the distillation process, which leverages
T5’s reasoning, introduces noise that misguides the student model.
This occurs even though T5 significantly outperforms LLaMA in
overall accuracy on the ARC dataset (as shown in Table 1). However,
TinyLLM demonstrates its robustness by correctly inferring the an-
swer (a), effectively understanding the rationales from both T5 and
LLaMA, and filtering out the noise introduced by the incorrect ra-
tionale from T5. This example highlights the strength of TinyLLM
in balancing and integrating multiple sources of knowledge, leading
to superior prediction accuracy.

A similar situation occurs in the second example from the PIQA
dataset. T5 provides an incorrect rationale, while LLaMA aligns
with the ground truth. Other methods failed to predict the correct
answer. However, TinyLLM successfully integrates and balances
rationales from both teachers.

5 Conclusion and Future Work

In this paper, we propose TinyLLM, a novel knowledge distilla-
tion paradigm to learn a small student LLM from multiple large
teacher LLMs. TinyLLM involves several principled designs, such
as learning contextually appropriate rationales using an in-context
example generator, enabling the credibility of rationales with a
teacher-forcing Chain-of-Thought strategy, and inheriting a wider
range of knowledge from various teachers. Our extensive empirical
evaluation and in-depth analysis, conducted across six datasets
spanning two reasoning tasks, demonstrate that TinyLLM brings
significant and consistent improvements by up to +15.69% over
full fine-tuning, up to +23.40% over teacher models, and up to
+11.79% over state-of-the-art. Moreover, TinyLLM holds a signifi-
cantly smaller model size, e.g., 1.1% to 26.0% compared to the sizes
of the teachers.

As future work, we envision several promising directions to fur-
ther enhance TinyLLM. One potential avenue is to manage any
conflicting rationales that can arise when integrating a broader set
of teacher LLMs. Conflicting rationales can emerge due to halluci-
nations, variations in reasoning styles, or domains of expertise for
different teacher models. Another direction involves using open-
source embeddings to represent questions within each dataset. This
approach maps questions into a semantic space and allows us to
select in-context examples based on similarity or the top nearest
neighbors. By incorporating targeted in-context example selection,
we can assess whether providing such focused and meaningful
context can enhance the comprehension and performance of the
student model.



Beyond Answers: Transferring Reasoning Capabilities to Smaller LLMs Using Multi-Teacher Knowledge Distillation WSDM ’25, March 10-14, 2025, Hannover, Germany

References

[1] Rishabh Agarwal, Nino Vieillard, Yongchao Zhou, Piotr Stanczyk, Sabela Ramos
Garea, Matthieu Geist, and Olivier Bachem. 2024. Generalized Knowledge Distilla-
tion for Auto-regressive LanguageModels. In The Twelfth International Conference
on Learning Representations.

[2] Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin,
Alexandre Passos, Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen,
et al. 2023. Palm 2 technical report. arXiv preprint arXiv:2305.10403 (2023).

[3] Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan
Wilie, Holy Lovenia, Ziwei Ji, Tiezheng Yu, Willy Chung, Quyet V. Do, Yan Xu,
and Pascale Fung. 2023. A Multitask, Multilingual, Multimodal Evaluation of
ChatGPT on Reasoning, Hallucination, and Interactivity. In ACL.

[4] Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. 2020.
PIQA: Reasoning about Physical Commonsense in Natural Language. In AAAI.

[5] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. In NeurIPS.

[6] Oana-Maria Camburu, Tim Rocktäschel, Thomas Lukasiewicz, and Phil Blunsom.
2018. e-SNLI: Natural Language Inference with Natural Language Explanations.
In NeurIPS.

[7] Hongzhan Chen, Siyue Wu, Xiaojun Quan, Rui Wang, Ming Yan, and Ji Zhang.
2023. MCC-KD: Multi-CoT Consistent Knowledge Distillation. In EMNLP Find-
ings.

[8] Xiusi Chen, Jyun-Yu Jiang, Wei-Cheng Chang, Cho-Jui Hsieh, Hsiang-Fu Yu, and
Wei Wang. 2024. MinPrompt: Graph-based Minimal Prompt Data Augmentation
for Few-shot Question Answering. In ACL.

[9] Jang Hyun Cho and Bharath Hariharan. 2019. On the efficacy of knowledge
distillation. In ICCV.

[10] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2023. PALM: Scaling Language Modeling with Pathways.
Journal of Machine Learning Research (2023).

[11] HyungWon Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus,
Yunxuan Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. 2022.
Scaling Instruction-Finetuned Language Models. arXiv preprint arXiv:2210.11416
(2022).

[12] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa
Schoenick, and Oyvind Tafjord. 2018. Think you have Solved Question Answer-
ing? Try ARC, the AI2 Reasoning Challenge. arXiv preprint arXiv:1803.05457
(2018).

[13] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan,
et al. 2024. The llama 3 herd of models. arXiv preprint arXiv:2407.21783 (2024).

[14] Jacob Eisenstein, Daniel Andor, Bernd Bohnet, Michael Collins, and David Mimno.
2022. Honest Students from Untrusted Teachers: Learning an Interpretable
Question-Answering Pipeline from a Pretrained Language Model. arXiv preprint
arXiv:2210.02498 (2022).

[15] Yao Fu, Hao Peng, Litu Ou, Ashish Sabharwal, and Tushar Khot. 2023. Specializing
Smaller Language Models towards Multi-Step Reasoning. In ICML.

[16] Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. 2021. Knowl-
edge distillation: A survey. International Journal of Computer Vision (2021).

[17] Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. 2024. MiniLLM: Knowledge
distillation of large language models. In The Twelfth International Conference on
Learning Representations.

[18] Yuxian Gu, Xu Han, Zhiyuan Liu, and Minlie Huang. 2021. Ppt: Pre-trained
prompt tuning for few-shot learning. arXiv preprint arXiv:2109.04332 (2021).

[19] Zhichun Guo, Chunhui Zhang, Yujie Fan, Yijun Tian, Chuxu Zhang, and Nitesh V
Chawla. 2023. Boosting graph neural networks via adaptive knowledge distilla-
tion. In AAAI.

[20] Braden Hancock, Antoine Bordes, Pierre-Emmanuel Mazare, and Jason Weston.
2019. Learning from Dialogue after Deployment: Feed Yourself, Chatbot!. In
ACL.

[21] Peter Hase and Mohit Bansal. 2022. When Can Models Learn From Explanations?
A Formal Framework for Understanding the Roles of Explanation Data. In ACL
Workshop.

[22] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. 2015. Distilling the knowledge
in a neural network. arXiv preprint arXiv:1503.02531 (2015).

[23] Namgyu Ho, Laura Schmid, and Se-Young Yun. 2022. Large Language Models
Are Reasoning Teachers. arXiv preprint arXiv:2212.10071 (2022).

[24] Cheng-Yu Hsieh, Chun-Liang Li, Chih-kuan Yeh, Hootan Nakhost, Yasuhisa Fujii,
Alex Ratner, Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister. 2023. Distilling
Step-by-Step! Outperforming Larger Language Models with Less Training Data
and Smaller Model Sizes. In ACL Findings.

[25] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2022. LoRA: Low-Rank Adaptation of Large
Language Models. In ICLR.

[26] Jie Huang and Kevin Chen-Chuan Chang. 2022. Towards reasoning in large
language models: A survey. arXiv preprint arXiv:2212.10403 (2022).

[27] Jiaxin Huang, Shixiang Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and
Jiawei Han. 2023. Large Language Models Can Self-Improve. In Proceedings of the
2023 Conference on Empirical Methods in Natural Language Processing. 1051–1068.

[28] Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun
Yu, and Jiawei Han. 2022. Large language models can self-improve. arXiv preprint
arXiv:2210.11610 (2022).

[29] Z Ji, N Lee, R Frieske, T Yu, D Su, Y Xu, E Ishii, Y J Bang, A Madotto, and P Fung.
2023. Survey of Hallucination in Natural Language Generation. Comput. Surveys
(2023).

[30] Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William Cohen, and Xinghua Lu.
2019. PubMedQA: A Dataset for Biomedical Research Question Answering. In
EMNLP.

[31] J Kaplan, S McCandlish, T Henighan, et al. 2020. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361 (2020).

[32] Jongwoo Ko, Sungnyun Kim, Tianyi Chen, and Se-Young Yun. [n. d.]. DistiLLM:
Towards Streamlined Distillation for Large Language Models. In Forty-first Inter-
national Conference on Machine Learning.

[33] Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yutaka Matsuo, and Yusuke
Iwasawa. 2022. Large Language Models are Zero-Shot Reasoners. In NeurIPS.

[34] B Lester, R Al-Rfou, and N Constant. 2021. The Power of Scale for Parameter-
Efficient Prompt Tuning. In EMNLP.

[35] Liunian Harold Li et al. 2023. Symbolic Chain-of-Thought Distillation: Small
Models Can Also "Think" Step-by-Step. arXiv preprint arXiv:2306.14050 (2023).

[36] X L Li and P Liang. 2021. Prefix-Tuning: Optimizing Continuous Prompts for
Generation. In ACL.

[37] Bill Yuchen Lin, Ziyi Wu, Yichi Yang, Dong-Ho Lee, and Xiang Ren. 2021. Rid-
dleSense: Reasoning about Riddle Questions Featuring Linguistic Creativity and
Commonsense Knowledge. In ACL Findings.

[38] Weize Liu, Guocong Li, Kai Zhang, Bang Du, Qiyuan Chen, Xuming Hu, Hongxia
Xu, Jintai Chen, and Jian Wu. 2023. Mind’s Mirror: Distilling Self-Evaluation
Capability and Comprehensive Thinking from Large Language Models. arXiv
preprint arXiv:2311.09214 (2023).

[39] Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam, Zhengxiao Du, Zhilin Yang,
and Jie Tang. 2021. P-tuning v2: Prompt tuning can be comparable to fine-tuning
universally across scales and tasks. arXiv preprint arXiv:2110.07602 (2021).

[40] Zheyuan Liu, Guangyao Dou, Zhaoxuan Tan, Yijun Tian, and Meng Jiang. 2024.
Towards Safer Large Language Models through Machine Unlearning. arXiv
preprint arXiv:2402.10058 (2024).

[41] Zheyuan Liu, Xiaoxin He, Yijun Tian, and Nitesh V Chawla. 2024. Can we soft
prompt LLMs for graph learning tasks?. In WWW.

[42] P Lu, S Mishra, T Xia, L Qiu, K-W Chang, S-C Zhu, O Tafjord, P Clark, and A
Kalyan. 2022. Learn to Explain: Multimodal Reasoning via Thought Chains for
Science Question Answering. In NeurIPS.

[43] Lucie Charlotte Magister, Jonathan Mallinson, Jakub Adamek, Eric Malmi, and
Aliaksei Severyn. 2022. Teaching Small Language Models to Reason. arXiv
preprint arXiv:2212.08410 (2022).

[44] Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. 2018. Can
a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question
Answering. In EMNLP.

[45] Sharan Narang, Colin Raffel, Katherine Lee, Adam Roberts, Noah Fiedel, and
Karishma Malkan. 2020. WT5?! Training Text-to-Text Models to Explain Their
Predictions. arXiv preprint arXiv:2004.14546 (2020).

[46] Danish Pruthi, Rachit Bansal, Bhuwan Dhingra, Livio Baldini Soares, Michael
Collins, Zachary C Lipton, Graham Neubig, and William W Cohen. 2022. Evalu-
ating Explanations: How Much Do Explanations from the Teacher Aid Students?.
In ACL.

[47] C Raffel, N Shazeer, A Roberts, et al. 2020. Exploring the Limits of Transfer
Learning with a Unified Text-to-Text Transformer. Journal of Machine Learning
Research (2020).

[48] Nazneen Fatema Rajani, BryanMcCann, CaimingXiong, and Richard Socher. 2019.
Explain Yourself! Leveraging Language Models for Commonsense Reasoning. In
ACL.

[49] Kavel Rao, Liwei Jiang, Valentina Pyatkin, Yuling Gu, Niket Tandon, Nouha Dziri,
Faeze Brahman, and Yejin Choi. 2023. What Makes it Ok to Set a Fire? Iterative
Self-distillation of Contexts and Rationales for Disambiguating Defeasible Social
and Moral Situations. In EMNLP Findings.

[50] Andrew Slavin Ross, Michael C Hughes, and Finale Doshi-Velez. 2017. Right
for the Right Reasons: Training Differentiable Models by Constraining Their
Explanations. arXiv preprint arXiv:1703.03717 (2017).

[51] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. Dis-
tilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108 (2019).

[52] Yucheng Shi, Shaochen Xu, et al. 2023. Mededit: Model Editing for Medical Ques-
tion Answering with External Knowledge Bases. arXiv preprint arXiv:2309.16035
(2023).

[53] Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam
Rajbhandari, Jared Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas,



WSDM ’25, March 10-14, 2025, Hannover, Germany Tian et al.

Vijay Korthikanti, Elton Zhang, Rewon Child, Reza Yazdani Aminabadi, Julie
Bernauer, Xia Song, Mohammad Shoeybi, Yuxiong He, Michael Houston, Saurabh
Tiwary, and Bryan Catanzaro. 2022. Using DeepSpeed and Megatron to Train
Megatron-Turing NLG 530B, a Large-Scale Generative Language Model. arXiv
preprint arXiv:2201.11990 (2022).

[54] Zhaoxuan Tan, Qingkai Zeng, Yijun Tian, Zheyuan Liu, Bing Yin, and Meng
Jiang. 2024. Democratizing Large Language Models via Personalized Parameter-
Efficient Fine-tuning. arXiv preprint arXiv:2402.04401 (2024).

[55] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos
Guestrin, Percy Liang, and Tatsunori B Hashimoto. 2023. Stanford Alpaca: An
Instruction-following LLaMA model. GitHub repository (2023).

[56] Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy
Hardin, Surya Bhupatiraju, Léonard Hussenot, ThomasMesnard, Bobak Shahriari,
Alexandre Ramé, et al. 2024. Gemma 2: Improving open language models at a
practical size. arXiv preprint arXiv:2408.00118 (2024).

[57] Yijun Tian, Shichao Pei, Xiangliang Zhang, Chuxu Zhang, and Nitesh V Chawla.
2023. KnowledgeDistillation onGraphs: A Survey. arXiv preprint arXiv:2302.00219
(2023).

[58] Yijun Tian, Huan Song, Zichen Wang, Haozhu Wang, Ziqing Hu, Fang Wang,
Nitesh V Chawla, and Panpan Xu. 2024. Graph neural prompting with large
language models. In AAAI.

[59] Yijun Tian, Chuxu Zhang, Zhichun Guo, Xiangliang Zhang, and Nitesh V Chawla.
2023. Learning MLPs on Graphs: A Unified View of Effectiveness, Robustness,
and Efficiency. In ICLR.

[60] Hugo Touvron, Thibaut Lavril, et al. 2023. Llama: Open and Efficient Foundation
Language Models. arXiv preprint arXiv:2302.13971 (2023).

[61] Hugo Touvron, Louis Martin, et al. 2023. Llama 2: Open Foundation and Fine-
Tuned Chat Models. arXiv preprint arXiv:2307.09288 (2023).

[62] George Tsatsaronis, Georgios Balikas, Prodromos Malakasiotis, et al. 2015. An
overview of the BIOASQ large-scale biomedical semantic indexing and question
answering competition. BMC Bioinformatics (2015).

[63] Miles Turpin, Julian Michael, Ethan Perez, and Samuel Bowman. 2024. Language
models don’t always say what they think: unfaithful explanations in chain-of-
thought prompting. Advances in Neural Information Processing Systems 36 (2024).

[64] Zhongwei Wan, Xin Wang, Che Liu, Samiul Alam, Yu Zheng, Zhongnan Qu,
Shen Yan, Yi Zhu, Quanlu Zhang, Mosharaf Chowdhury, et al. 2023. Efficient
large language models: A survey. arXiv preprint arXiv:2312.03863 1 (2023).

[65] Chaozheng Wang, Yuanhang Yang, Cuiyun Gao, Yun Peng, Hongyu Zhang, and
Michael R Lyu. 2022. No more fine-tuning? an experimental evaluation of prompt
tuning in code intelligence. In Proceedings of the 30th ACM joint European software
engineering conference and symposium on the foundations of software engineering.
382–394.

[66] Haoyu Wang, Tianci Liu, Ruirui Li, Monica Cheng, Tuo Zhao, and Jing Gao.
2024. Roselora: Row and column-wise sparse low-rank adaptation of pre-
trained language model for knowledge editing and fine-tuning. arXiv preprint
arXiv:2406.10777 (2024).

[67] Haoyu Wang, Yaqing Wang, Tianci Liu, Tuo Zhao, and Jing Gao. 2023. HadSkip:
Homotopic and Adaptive Layer Skipping of Pre-trained Language Models for

Efficient Inference. In EMNLP Findings.
[68] Peifeng Wang, Aaron Chan, Filip Ilievski, Muhao Chen, and Xiang Ren. 2022.

PINTO: Faithful Language Reasoning Using Prompt-Generated Rationales. In
ICLR.

[69] Shuohang Wang, Yang Liu, Yichong Xu, Chenguang Zhu, and Michael Zeng.
2021. Want To Reduce Labeling Cost? GPT-3 Can Help. In EMNLP Findings.

[70] J Wei, Y Tay, R Bommasani, et al. 2022. Emergent Abilities of Large Language
Models. arXiv preprint arXiv:2206.07682 (2022).

[71] Jason Wei, Xuezhi Wang, et al. 2022. Chain-of-Thought Prompting Elicits Rea-
soning in Large Language Models. In NeurIPS.

[72] WWei, X Ren, J Tang, Q Wang, L Su, S Cheng, J Wang, D Yin, and C Huang. 2024.
LLMRec: Large LanguageModels withGraphAugmentation for Recommendation.
In WSDM.

[73] SarahWiegreffe, AnaMarasovic, and Noah A Smith. 2021. Measuring Association
Between Labels and Free-Text Rationales. In EMNLP.

[74] BigScience Workshop, Teven Le Scao, Angela Fan, Christopher Akiki, Ellie
Pavlick, Suzana Ilić, Daniel Hesslow, Roman Castagné, Alexandra Sasha Luccioni,
François Yvon, et al. 2022. Bloom: A 176b-parameter open-access multilingual
language model. arXiv preprint arXiv:2211.05100 (2022).

[75] Likang Wu, Zhi Zheng, Zhaopeng Qiu, Hao Wang, Hongchao Gu, Tingjia Shen,
Chuan Qin, Chen Zhu, Hengshu Zhu, Qi Liu, et al. 2023. A Survey on Large
Language Models for Recommendation. arXiv preprint arXiv:2305.19860 (2023).

[76] Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen, Reynold Cheng, Jinyang Li, Can
Xu, Dacheng Tao, and Tianyi Zhou. 2024. A survey on knowledge distillation of
large language models. arXiv preprint arXiv:2402.13116 (2024).

[77] Omar Zaidan, Jason Eisner, and Christine Piatko. 2007. Using “Annotator Ratio-
nales” to Improve Machine Learning for Text Categorization. In NAACL.

[78] Eric Zelikman, Wanjing Ma, Jasmine Tran, Diyi Yang, Jason Yeatman, and Nick
Haber. 2023. Generating and Evaluating Tests for K-12 Students with Language
Model Simulations: A Case Study on Sentence Reading Efficiency. In EMNLP.

[79] Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. 2022. Star: Bootstrap-
ping Reasoning with Reasoning. In NeurIPS.

[80] Ye Zhang, Iain Marshall, and Byron C Wallace. 2016. Rationale-Augmented
Convolutional Neural Networks for Text Classification. In EMNLP.

[81] Zhuosheng Zhang, Aston Zhang, Mu Li, George Karypis, Alex Smola, et al. [n. d.].
Multimodal Chain-of-Thought Reasoning in Language Models. Transactions on
Machine Learning Research ([n. d.]).

[82] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou,
Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang,
Yushuo Chen, Zhipeng Chen, Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang,
Zikang Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. 2023. A Survey of Large
Language Models. arXiv preprint arXiv:2303.18223 (2023).

[83] Lianmin Zheng, Wei-Lin Chiang, et al. 2023. Judging LLM-as-a-judge with
MT-Bench and Chatbot Arena. arXiv preprint arXiv:2306.05685 (2023).

[84] Fengbin Zhu, Wenqiang Lei, Chao Wang, Jianming Zheng, Soujanya Poria, and
Tat-S Chua. 2021. Retrieving and Reading: A Comprehensive Survey on Open-
Domain Question Answering. arXiv preprint arXiv:2101.00774 (2021).


	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Preliminary
	3.2 Obtaining Rationales from Teachers
	3.3 Learning a Small Student

	4 Experiments
	4.1 Experimental Setup
	4.2 Performance Comparison
	4.3 Efficiency Analysis of Training Set Size in Knowledge Transfer
	4.4 Ablation Study
	4.5 Parameter Sensitivity
	4.6 Case Study

	5 Conclusion and Future Work
	References

